Adulteration And Its Mitigation By Phytochemical And Anatomical Screening Of Family Liliaceae

Farah Parveen And M.P. Singh

Udai Pratap College Department of Botany, U.P.-221002 Corresponding Author: Farah Parveen

Abstract- Endangered medicinal plants have been used as traditional and alternative medicines from last several decades. Deforestation and extinction of many medicinal plant species may leads to scarcity of these plants and was resulted in adulteration. In India, of the 8000 species of medicinal plants harvested from the wild, approximately 960 are in the active trade. Adulteration in market sample is one of the greatest drawback in promotion of herbal medicinal plant products. Future of herbal medicine totally depends upon the correct identification, standardization and quality assurance. Comparative anatomical study and phytochemical screening may be used for its correct authentication and prevention of adulteration. In order to ensure the use of only genuine and uniform material of such herbal drugs, work on plant identifying features assumes vital significance. Preliminary phytochemical analysis showed that saponins, flavonoids, glycosides, steroids were present in the plant material while comparative anatomical study would serve as standard reference for identification of the different plant species of Chlorophytum Ker. Gawl and Asparagus L.

Key Words - Adulteration, Herbal plant, Phytochemicals, Saponins.

Date of Submission: 02-06-2018

Date of acceptance: 18-06-2018

I. Introduction

Adulteration in market sample is one of the greatest drawback in promotion of ayurvedic medicinal plant products. In health aspect, adulteration and substitution is burning issue of herbal industries (Vines, 2004, Canter *et al.*, 2005). Herbal plants have been used as alternative drugs with no side effect. Scientific method for evaluation of adulteration has been done by microscopic and phytochemical analysis of medicinal plant products i.e; leaf, stem, root and flower parts. Present paper deals with phytochemical and anatomical evaluation of nine plant species of genus *Chlorophytum* ker. Gawl. and *Asparagus* L. belonging to family Liliaceae. They are considered as 'wonder drug' due to its aphrodisiac properties (Kirtikar and Basu, 1975, Oudhia, 2001), anti-diabetic, anti-stress, anti-inflammatory, anti-cancerous, anti-oxidant, anti-tumerous, anti-ageing and anti-microbial properties.

Although 215 different species of *Chlorophytum* ker. Gawl.(Li *et al.*, 1990) and 300 species of *Asparagus* L. have been reported throughout the world, but only few find medicinal relevance, out of which prominent are *Chlorophytum borivilianum* Santapau and Fernandes, *Chlorophytum tuberosum* Baker. and *Asparagus recemosus* willd.

II. Method And Material- A. Collection And Identification

Different species of *Chlorophytum* Ker. Gawl. and *Asparagus* L. were collected from different regions of Varanasi and Lucknow of Utter Pradesh. Tubers of *Chlorophytum borivilianum* Santapau and Fernandes and *Chlorophytum tuberosum* Baker. were obtained from National Botanical Research Institute (NBRI) Lucknow. Seed and two seedlings of *Asparagus recemosus* willd. and *Gloriosa superba* L.were collected from Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow. While *Chlorophytum laxum* R. Br., *Chlorophytum comosum* Jacq., *Asparagus fulcatus* L., *Asparagus retrofractus* L., *Asparagus densiflorus* (Kunth.) Jessop. Asparagus setaceous (Kunth.) Jessop. were collected from different nurseries of Lucknow and Varanasi.

b. Anatomical analysis: transverse section of fresh roots and stems of these plants obtained after double staining, permanent slides were prepared after dehydration in different grades of alcohol and mounting in D.P.X. sections were studied and photomicrographed for detailed observation.

c. Phytochemical studied: Fresh leaves of plant samples were washed thoroughly 2-3 times in running water and then by distilled water. 120 ml of acetone, ethyl acetate, 80% methanol , benzene, petroleum ether and

hexane were added with 5g of washed leaves and kept at room temperature for 24 hours. After it resulted filtrate was used for phytochemical analysis.

i. Test of Carbohydrates - 1 ml of extract, 0.5 ml of fehling solution (A) and 0.5 ml of fehling solution (B) was added respectively and boiled for 5 minutes (Shalini *et.al.*, 2012), formation of brick red precipitate will confirm presence of carbohydrate.

ii. Test of Saponins - 1ml of extract and 4ml of distilled water was added to make up 5ml volume. The suspension is shaken for 2 minutes (Shalini *et.al.*, 2012). Formation of foam will confirm the presence of saponins.

iii. Test of Flavonoides - 1ml of extract, little amount of magnesium and 1ml of conc. sulphuric acid were added along the side of test tube (Avijit *et.al.*, 2002). Formation of yellow colour will confirm the presence of flavonoides.

iv. Test of Steroids - 1ml of extract and 2ml of chloroform was mixed gently. Then 2ml of conc. H_2SO_4 was carefully added along the wall of test tube (Shalini *et.al.*, 2012). Formation of reddish brown colouration at the junction of two layers will confirm the presence of steroids (Siddiqui and Ali, 1997).

v. Test of Glycosides - 1ml of extract and few drops of glacial acetic acid were added for a minute and cooled. The content was gently transferred to another test tube having 1 ml of sulphuric acid (Sreenivasa *et. al.*, 2015). Formation of reddish ring at the junction of two layers will confirm the presence of glycosides.

					Asparag	us L .					
S.	Extract	Test of	Chlorophytum	Chlorophytum	Chlorophytum	Chlorophytum	Asparagus	Asparagus	Asparagus	Asparagus	Asparagus
No.		significance	borivilianum	tuberosum	comosum	laxum	recemosus	densiflorus	setaceous	fulcatus	retrofracts
1.	Acetone	i. Carbohydrates	++	++	++	++	++	++	++	++	+
		ii. Saponins	+	+	-	+	++	-	-	-	-
		iii. Flavonoides	++	++	+	+	++	+	++	++	+
		iv. Steroides	++	++	+	+	++	-	+	-	+
		v. Glycosides	++	++	-	-	+	-	-	-	-
2.	Ethyl acetate	i. Carbohydrates	++	++	++	++	++	++	++	++	++
		ii. Saponins	++	++	++	++	++	++	++	++	+
		iii. Flavonoides	++	+	+	+	++	-	++	-	-
		iv. Steroides	++	++	+	+	+	-	-	-	-
		v. Glycosides	++	++	-	-	+	-	-	-	-
3.	80% Methnol	i. Carbohydrates	++	++	++	++	+	+	+	+	+
		ii. Saponins	+	+	-	++	+	+	-	-	-
		iii. Flavonoides	++	++	+	+	++	+	+	+	+
		iv. Steroides	++	++	+	+	++	-	+	+	+
		v. Glycosides	+	+	-	-	+	-	-	-	-
4.	Benzene	i. Carbohydrates	++	++	++	++	++	+	+	+	++
		ii. Saponins	+	+	+	+	+	+	++	+	+
		iii. Flavonoides	++	++	+	+	+	-	-	-	-
		iv. Steroides	++	+	-	-	-	-	+	+	-
		v. Glycosides	+	++	-	-	-	-	-	-	-
5.	Petro- ether	i. Carbohydrates	++	++	++	++	++	+	+	+	+
		ii. Saponins	+	+	+	++	+	+	+	-	+
		iii. Flavonoides	-	-	+	+	+	+	-	+	-
		iv. Steroides	+	+	-	-	+	-	-	-	-
		v. Glycosides	+	+	-	-	+	-	-	-	-
6.	Hexane	i. Carbohydrates	++	++	++	+	++	+	+	+	+
		ii. Saponins	++	++	+	+	++	+	+	+	-
		iii. Flavonoides	+	+	+	+	++	-	-	-	-
		iv. Steroides	++	++	-	-	+	-	-	-	-
		v. Glycosides	++	++	-	-	++	-	-	-	-

Table 1: Observation of phytochemical screening of plant species of Chlorophytum Ker. Gawl. and Asparagus L.

(++) present in appropriate amount, (+) present in less amount, (-) absent.

Table -2:1 Root differentiation and identification chart of different species of Chlorophytum Ker. Gawl.

S.No.	Plant part		Plant name		
		Chlorophytum	Chlorophytum	Chlorophytum	Chlorophytum
		borivilianum	tuberosum	comosum	laxum
1.	Cortex and structure of vascular tissue	Cortex thin walled, parenchymatous, thick walled xylem vessels,vascular tissue radial, exarch.	Cortex thick walled sclerenchymatous, lignified pitted xylem, vascular tissue radial, exarch.	Cortex thick walled sclerenchymatous, cork cell filled with few colour, lignified pitted xylem, vascular tissue radial, exarch.	Cortex thick walled sclerenchymatous,vascular tissue radial, exarch.
2.	No. of xylem	No. of xylem ranges between 8-10.	No. of xylem ranges between 12-15	No. of xylem ranges between 30-40	No. of xylem ranges between 25-30
3.	Raphides and Raphides and scleried are present large in amount.		Raphides and scleried are present less in amount.	Raphides are large, but scleried less in amount.	Raphides and scleried are present lesser in amount.

4.	Endodermis,	Endodermis and	Endodermis and	Endodermis and	Endodermis and pericycle
	pericycle and	pericycle are single	pericycle are single	pericycle are single	are single layered
	pith	layered,	layered, parenchymatous	layered parenchymatous	parenchymatous pith occupy
		parenchymatous pith	pith occupy less place.	pith occupy larger	larger space.
		occupy less place.		space.	

Table -2:2 Stem differentiation and identification chart of different species of *Chlorophytum* Ker. Gawl.

S.No.	Plant part	Plant name				
		Chlorophytum	Chlorophytum	Chlorophytum	Chlorophytum	
		borivilianum	tuberosum	comosum	laxum	
1.	Epidermis &	Epidermis single	Epidermis single layered	Epidermis single	Epidermis single layered ,	
	cortical cell	layered, cortical cell is	,cortical cell is 5 layered	layered, cortical cell is	cortical cell is 3 layered	
	(Hypodermis)	4 layered	(sclerenchymatous).	4 layered	(sclerenchymatous).	
		(sclerenchymatous).		(sclerenchymatous).		
2.	Ground tissue	It extends from just below hypodermis,	It extends from just below hypodermis, thin	It extends from just below hypodermis, thin	It extends from just below hypodermis, thin walled and	
		thin walled and parenchymatous.	walled and parenchymatous.	walled and parenchymatous.	parenchymatous.	
3.	Vascular tissue	Vascular bundles are 25-30 in number, conjoint, collateral, endarch, closed, arranged in 2 rows.	Vascular bundles are 15- 20 in number, conjoint, collateral, endarch, closed, arranged in 4 rows.	Vascular bundles are 30-35 in number, conjoint, collateral, endarch, closed, arranged in 6 rows.	Vascular bundles are 20-25 in number, conjoint, collateral, endarch, closed, arranged in 5 rows.	
4.	Pith	Absent	Absent	Absent	Absent	

Table -2.3 Root differentiation and identification chart of different species of Asparagus L. Plant part Plant part

S.No.	Plant part		Plant n	ame	^ ^	0
		Asparagus recemosus	Asparagus densiflorus	Asparagus setaceous	Asparagus falcatus	Asparagus retrofractus
1.	Epidermis and cortical tissue	Epidermis single layered, outer wall of cell proliferate to form multicellular hair. Cortical cell is undifferentiated and consists of loosely walled parenchymatous cells.	Epidermis single layered, outer wall of cell proliferate to form multicellular hair in few places. Cortex occupy 3/4 portion comprises thick walled (central) and thin walled (peripheral) tissue.	Epidermis single layered , multicellular hair is not seen, Cortex occupy 3/4 portion comprises thick walled (central) and thin walled (peripheral) tissue.	Epidermis single layered, multicellular hair is absent, Cortex occupy 3/4 portion comprises thick walled (central) and thin walled (peripheral) tissue.	Epidermis single layered, multicellular hair is absent, Cortex occupy 3/4 portion comprises thick walled (central) and thin walled (peripheral) tissue.
2.	Number and structure of vascular bundle	Vascular bundles are 12-15 in number, xylem alternating with phloem in exarch and radial manner.	Vascular bundles are 18-20 in number, xylem alternating with phloem in exarch and radial manner.	Vascular bundles are 15-18 in number, xylem alternating with phloem in exarch and radial manner.	Vascular bundles are 20-25 in number, xylem alternating with phloem in exarch and radial manner.	Vascular bundles are 18-20 in number, xylem alternating with phloem in exarch and radial manner.
3.	Endodermis , pericycle and pith	Endodermis is well distinct as compare to pericycle and parenchymatous pith occupy small area.	Endodermis and pericycle are well developed and parenchymatous pith occupy very small area.	Endodermis and pericycle both are well distinct and parenchymatous pith occupy small area.	Endodermis is well distinct as compare to pericycle and parenchymatous pith is completely absent.	Endodermis is well distinct as compare to pericycle and parenchymatous pith occupy very small area.

Table -2.4 Stem differentiation and identification chart of different species of Asparagus L. S.No. Plant part Plant name

5.INO.	Plant part	Plant name				
		Asparagus	Asparagus	Asparagus	Asparagus	Asparagus
		recemosus	densiflorus	setaceous	falcatus	retrofractus
1.	Epidermis	Epidermis is not	Epidermis is	Epidermis is not	Epidermis is	Epidermis is
	and cortical	well distinct, cortex	distinct, tangentially	well distinct.	distinct,	distinct. Cortex
	tissue	sclerenchymatous	elongated to form	Cortex composed	tangentially	composed of
		erom central while	multicellular hair.	of 2-3 layered	elongated to form	collenchymatous
		thinner towards	Cortex composed of	collenchymatous	multicellular hair.	and
		periphery.	collenchymatous	and	Cortex composed	parenchymatous
			and parenchymatous	parenchymatous	of collenchymatous	cell.
			cell.	cell.	and	
					parenchymatous	
					cell.	
2.	Vascular	No. of vascular	No. of vascular	No. of vascular	No. of vascular	No. of vascular
	tissue	tissue are 15-18,	tissue are 10-15,	tissue are 20-25,	tissue are 20-25,	tissue are 25-28,
		conjoint, collateral,	conjoint, collateral,	conjoint, collateral,	conjoint, collateral,	conjoint, collateral,
		endarch and closed,	endarch and closed,	endarch and	endarch and	endarch and closed,
		small vessels of	protoxylem and	closed, small	closed, vascular	protoxylem and

		protoxylem and two bigger vessels of metaxylem arranged in two rows.	metaxylem arranged in two rows i.e; larger in centre while shorter in periphery.	vessels of protoxylem and two bigger vessels of metaxylem arranged in two rows.	tissue are arranged in two rows.	metaxylem arranged in two rows.
3.	Pith	Very small and parenchymatous pith is present in centre region	Absent	Very small and parenchymatous pith is present in centre region.	Parenchymatous pith is present in centre region.	Very small and parenchymatous pith is present .

Keys for anatomical identification of plant Chlorophytum Ker. Gawl.

A. Number of xylem strand 10-15, pith less developed in root.

B. Cortex 4 layered, vascular bundles 20-25 in stem	C. borivilianum
BB. Cortex 5-6 layered, vascular bundles 15-16 in stem	C. tuberosum
AA. Xylem strands 30-40, pith well developed in root.	
B. Raphides plenty	C. comosum
BB. Raphides scanty	C. laxum

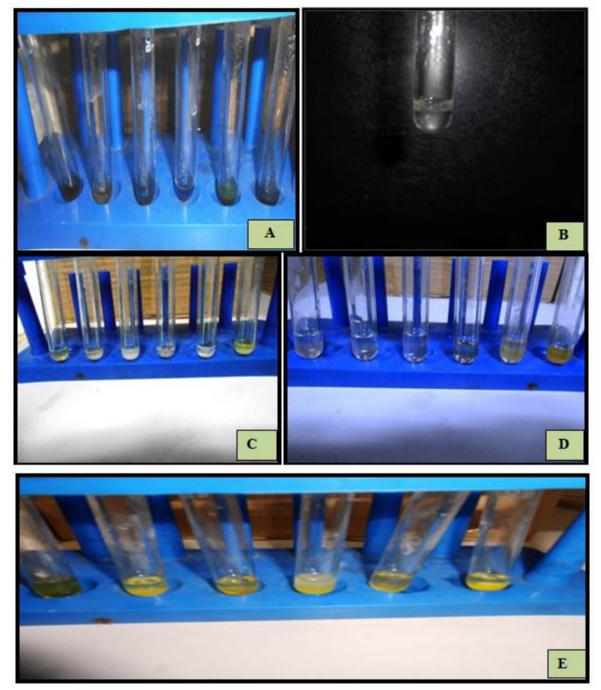
Keys for anatomical identification of plants Asparagus L.

	- J =	
A.	Pith absent in root	A. fulcatus
A	A. Pith present.	
E	B. Root hair present.	
	C. Cortex cell loosely arranged	A. racemosus
	CC. Cortex cell compactively arranged	A. densiflorus
BI	B. Root hairs absent.	
	C. Vascular bundles 20-23 in stem	A. setaceous
	CC. Vascular bundles 26-28 in stem	A. densiflorus

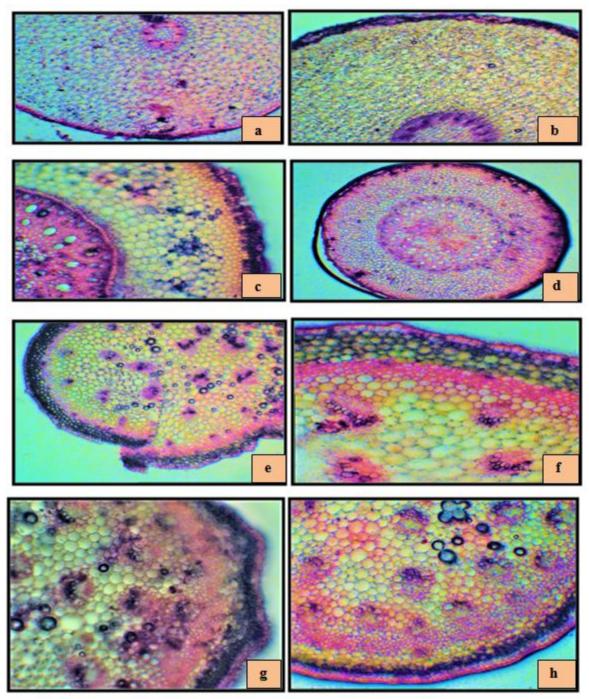
III. Result And Discussion

Preliminary phytochemical screening of extract revealed the presence of saponins, flavonoides, steroids and glycosides are in significant amount *Chlorophytum borivilianum*, *Chlorophytum tuberosum* and *Asparagus recemosus* in comparison of other species of *Chlorophytum* Ker. Gawl. and *Asparagus* L. Anatomical differentiation of these species reveals exact identification and can be employed to prevent misconception and adulteration.

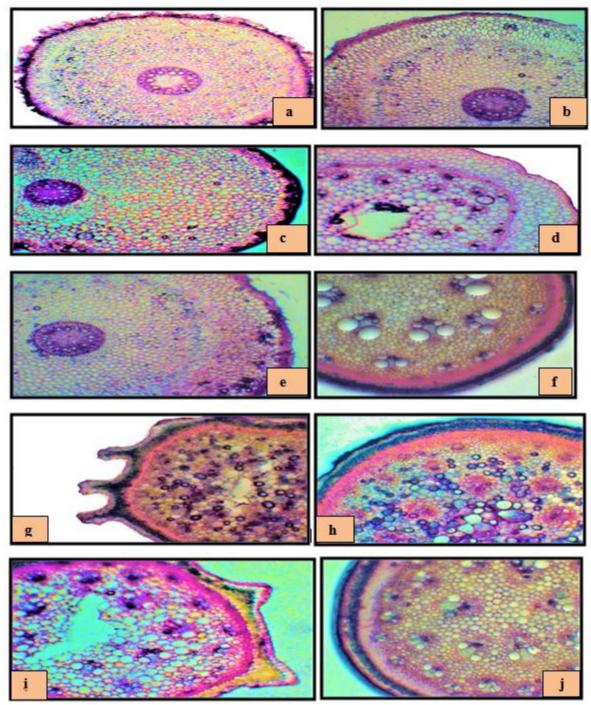
From medicinal point of view *Chlorophytum borivilianum* contains Arundinoside A (a spirostane steroidal saponin), Arundinaside B (an aliphatic glucosides) and sapoginins (Bordia et al, 1995) and these chemical constituents make safed musli as potent drug having aphrodisiac agent (Marais and Reilly, 1978), as remedy of arthritis and natal and post natal problems. In case of *Asparagus recemosus*, three steroidal saponins i.e; Racemosides A(1), B(2), C(3) and new flavonoides were reported from roots and fruits which give potency to satawar antidysenteric property. Its meticulous use as a galactogogue to enhance breast milk secretion and producing thousand of healthy ova is well known (Thakur and Dixit, 2005).


Acknowledgement:

The author is greatful to Head, Department of Botany, Udai Pratap College, Varanasi and M.R.D. Lifesciences Laboratory, Lucknow for providing necessary facilities during practical investigation.


References

- [1]. Avijit Mazumber et al. 2002. Phytochemical observation on leaf of Lagerstroemia parviflora (Roxb); Ancient Science of life vol. XXII (2).
- [2]. Bordia, PC, Joshi, A, Simlot, MM 1995. Safed Musli Chadha, KLGupta, R.eds. Advances in Horticulture: Medicinal and Aromatic PlantsMalhotra Publishing HouseNew Delhi440449
- [3]. Canter H P, Thomas H, Ernst E. 2005. Bringing Medicinal Plants Into Cultivation: Opportunities And Challenges For Biotechnology. *Trends In Biotechnology* Vol 23, No. 4.
- [4]. Kirtikar KR, Basu BD. 1975. Indian Medicinal plants. M/s Periodical experts. New Delhi. Vol. 3. 2ml edition (Reprint 1975). 1933: 1734-1737. 1702.
- [5]. Li X-C, Wong D-Z & Yang C-R 1990. Steroidal saponins from Chlorophytum malayense. Phytochemistry 29: 3893–3898
- [6]. Marais W., Reilly J. 1978. Chlorophytum and its related genera (Liliaceae). Kew Bulletin 32: 653-663. doi:10.2307/4109671
- [7]. Oudhia P. 2001. Problems Percieved By Safed Musli (*Chlorophytum Borivilianum*) Growers Of Chhattisgarh (India) Region: A Study. Journal Of Medicinal And Aromatic Plant Sciences. 22/4A and 23/1A: 396-399.
- [8]. Siddiqui AA, Ali M. Practical Pharmaceutical chemistry. Edn.1, CBS Publishers and Distributors, New Delhi, 1997, 126-131.
- [9] Shalini, S. and Sampathkumar, P. 2012. Phytochemical screening and antimicrobial activity of plant extracts for disease management, International Journal Current. Science. , 209-218.


- [10]. Srinivasa Rao Vandavasi, Maddi Ramaiah, Pasumarthy NV Gopal. 2015; In vitro standardization of flowers of methanolic extract of Dendrobium normale Falc. for free radical scavenging activity. Journal of Pharmacognosy and Phytochemistry., 2015; 3(5): 107-111.
- M. Thakur and V. K. Dixit, "Effect of *Chlorophytum borivilianum* on androgenic & sexual behavior of male rats," Indian Drugs, vol. 43, pp. 300–306, 2006. View at Google Scholar
- [12]. Vines, 2004.G. Vines**Herbal harvests with a future**Towards Sustainable Sources for Medicinal Plants, Plantlife International, Salisbury, UK (2004) (http://www.plantlife.org.uk/uploads/documents/Herbal-Harvests-with-a-Future.pdf)

Qualitative estimation of phytochemicals- (A) Carbohydrate (B) Saponins (C) Flavonoides (D) Steroides and (E) Glycosides.

Cross section of root and stem of genus *Chlorophytum* Ker. Gawl. (a- *C. borivilianum* (root), b- *C. tuberosum* (root), c- *C. comosum* (root), d- *C. laxum* (root), e- *C. borivilianum* (stem), f- *C. tuberosum* (stem), g- *C. comosum* (stem), h- *C. laxum* (stem).

Cross section of root and stem of genus Asparagus L. (a-A. recrmosus (root), b-A. densiflorus (root), c-A. setaceous (root), d-A. falcatus (root), e-A. retrofractus (root), f-A. recemosus (stem), g-A. densiflorus (stem), h-A. setaceous (stem), i-A. fulcatus (stem), j-A. retrofractus.

Farah Parveen. " Species Adulteration And Its Mitigation By Phytochemical And Anatomical Screening Of Family Liliaceae." IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) 4.3 (2018): 22-28.

DOI: 10.9790/264X-0403012228